If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2-4k-25=0
a = 4; b = -4; c = -25;
Δ = b2-4ac
Δ = -42-4·4·(-25)
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{26}}{2*4}=\frac{4-4\sqrt{26}}{8} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{26}}{2*4}=\frac{4+4\sqrt{26}}{8} $
| 3+x=18x= | | 4(5x-3)=-52 | | 3x+8/2-4x=x-5/3 | | 13.1=b/9 | | 7/8x-4=3/4 | | 5(8-7x)=65 | | 2/5-3y/5=2+3/y | | A=3.14x113.04^2 | | 8k−7k=15 | | 1/3n=33 | | 5(x-4)=5x-2 | | 1.17=x+3 | | 2/5-3y/5-3/y=2 | | 3(a+4)-8(a-3)=1 | | x/15=0.7 | | 3x-2+4x-9+3x-9=180 | | 15(2-y)-5(y+6)/1-3y=10 | | 5(3p+3)-9=-3 | | 2(p+8)-6/7=10 | | 2(7+3y)=-y | | f^2/2=51 | | 227=119-x | | 6x-8=20+10 | | 5y-28=11+4y | | x^2-7x+10=(x-5)(x-5) | | -4-5p=1-2(2p+4) | | x^2-7x+10=(x-5)(x-4) | | 5x2-x-3=0 | | 20-2/3n=6 | | x+x-3+3x-9=3x | | -10x+4×-77=43 | | 5x−3=32 |